1 Integrating Irreducible Quadratics

1.1 Concepts

1. For partial fractions, we often end up with something of the form $\frac{A x+B}{x^{2}+b x+c}$ where the bottom is an irreducible polynomial, one that does not have real roots, and we need to integrate it. We will always end up with a $\ln x^{2}+b x+c$ term and an arctan term. In order to split this, let $u=x^{2}+b x+c$ so $d u=2 x+b$ and write $A x+B=C d u+D$. Then you need to be able to complete the square and use the fact that

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan (x / a)+C .
$$

1.2 Example

2. Find $\int \frac{2 x+3}{4 x^{2}+4 x+5} d x$.

Solution: First we want to get the denominator to be monic or have a leading term x^{2}. This gives $\int \frac{2 x+3}{4 x^{2}+4 x+5} d x=\frac{1}{4} \int \frac{2 x+3}{x^{2}+x+5 / 4} d x$. Now let $u=x^{2}+x+5 / 4$.
Then $d u=2 x+1$ and we want to write $2 x+3=C(2 x+1)+D$. Matching coefficients gives $C=1$ and $D=2$. Thus

$$
\int \frac{2 x+3}{4 x^{2}+4 x+5}=\frac{1}{4}\left[\int \frac{d u}{u}+\int \frac{2}{x^{2}+x+5 / 4} d x\right]
$$

The first integral is just $\ln |u|=\ln \left|x^{2}+x+5 / 4\right|$. For the second integral, we need to complete the square. To do this, take the middle term 1 , divide by 2 , then square to get $1 / 4$ and so $x^{2}+x+5 / 4=x^{2}+x+1 / 4+1=(x+1 / 2)^{2}+1$. Thus

$$
\begin{gathered}
\frac{1}{4}\left[\int \frac{d u}{u}+\int \frac{2}{x^{2}+x+5 / 4} d x\right]=\frac{1}{4}\left[\ln \left|x^{2}+x+5 / 4\right|+\int \frac{2}{(x+1 / 2)^{2}+1} d x\right] \\
=\frac{\ln \left|x^{2}+x+5 / 4\right|}{4}+\frac{\arctan (x+1 / 2)}{2}+C
\end{gathered}
$$

1.3 Problems

3. Find $\int \frac{4 x+1}{x^{2}+4 x+8} d x$.

Solution: Let $u=x^{2}+4 x+8$ so $d u=2 x+4$ and $4 x+1=2(2 x+4)-7$. Then we want to complete the square and we do this by halving 4 to get 2 then squaring to get 4 to get $x^{2}+4 x+8=x^{2}+4 x+4+4=(x+2)^{2}+4$ and hence

$$
\begin{gathered}
\int \frac{4 x+1}{x^{2}+4 x+8} d x=\int \frac{2(2 x+4)}{x^{2}+4 x+8} d x-\int \frac{7}{(x+2)^{2}+2^{2}} d x \\
=2 \ln \left|x^{2}+4 x+8\right|-\frac{7}{2} \arctan ((x+2) / 2)+C .
\end{gathered}
$$

4. Find $\int \frac{3 x+4}{x^{2}-2 x+10} d x$.

Solution: Let $u=x^{2}-2 x+10$ so then $d u=2 x-2$ and then $3 x+4=\frac{3}{2}(2 x-2)+7$ and to complete the square, we add $(-2 / 2)^{2}=1$ to get $x^{2}-2 x+10=x^{2}-2 x+1+9=$ $(x-1)^{2}+3^{2}$. Thus we split to get

$$
\begin{gathered}
\int \frac{3 x+4}{x^{2}-2 x+10} d x=\frac{3}{2} \int \frac{(2 x-2) d x}{x^{2}-2 x+10}+7 \int \frac{1}{(x-1)^{2}+3^{2}} d x \\
=\frac{3}{2} \ln \left|x^{2}-2 x+10\right|+\frac{7}{3} \arctan ((x-1) / 3)+C .
\end{gathered}
$$

1.4 Extra Problems

5. Find $\int \frac{x-3}{x^{2}-4 x+5} d x$.

Solution: We write

$$
\begin{gathered}
\int \frac{x-3}{x^{2}-4 x+5} d x=\frac{1}{2} \int \frac{2 x-4}{x^{2}-4 x+5}-\int \frac{1}{(x-2)^{2}+1} d x \\
=\frac{1}{2} \ln \left|x^{2}-4 x+5\right|-\arctan (x-2)+C
\end{gathered}
$$

6. Find $\int \frac{5-x}{x^{2}-x+1} d x$.

Solution: We write

$$
\begin{gathered}
\int \frac{-x+5}{x^{2}-x+1}=\frac{-1}{2} \int \frac{2 x-1}{x^{2}-x+1} d x+\frac{9}{2} \int \frac{1}{(x-1 / 2)^{2}+3 / 4} \\
=\frac{-1}{2} \ln \left|x^{2}-x+1\right|+\frac{9}{2 \sqrt{3} / 2} \arctan ((x-1 / 2) /(\sqrt{3} / 2))+C \\
\quad=\frac{-1}{2} \ln \left|x^{2}-x+1\right|+3 \sqrt{3} \arctan \left(\frac{2 x-1}{\sqrt{3}}\right)+C .
\end{gathered}
$$

2 Determinants and Inverses

2.1 Concepts

7. There are 2 ways to calculate the determinant of a 3×3 matrix $\left(\begin{array}{lll}b_{1} & b_{2} & b_{3} \\ b_{4} & b_{5} & b_{6} \\ b_{7} & b_{8} & b_{9}\end{array}\right)$. The first is expansion along the first row to get the determinant is $b_{1}\left|\begin{array}{ll}b_{5} & b_{6} \\ b_{8} & b_{9}\end{array}\right|-b_{2}\left|\begin{array}{ll}b_{4} & b_{6} \\ b_{7} & b_{9}\end{array}\right|+b_{3}\left|\begin{array}{ll}b_{4} & b_{5} \\ b_{7} & b_{8}\end{array}\right|$. The other is to use the diagonal method to get $b_{1} b_{5} b_{9}+b_{2} b_{6} b_{7}+b_{3} b_{4} b_{8}-b_{1} b_{6} b_{8}-b_{2} b_{4} b_{9}-$ $b_{3} b_{5} b_{7}$.

We can determine the number of solutions to an equation $A \vec{x}=\vec{b}$ by the determinant of A and that is given below.

$\operatorname{det}(A)$	$\neq 0$	$=0$
Number of Solutions	1	0 or ∞

2.2 Examples

8. Find the determinant of $\left|\begin{array}{ccc}3 & 2 & 3 \\ -1 & 5 & -3 \\ 7 & -1 & -1\end{array}\right|$.

Solution: One option gives us $3(5 \cdot(-1)-(-3) \cdot(-1))-2((-1) \cdot(-1)-(-3) \cdot 7)+$ $3((-1) \cdot(-1)-5 \cdot 7)=-170$ and the other way gives us $3 \cdot 5 \cdot(-1)+2 \cdot(-3) \cdot 7+$ $3 \cdot(-1) \cdot(-1)-3 \cdot(-3) \cdot(-1)-2 \cdot(-1) \cdot(-1)-3 \cdot 5 \cdot 7=-170$.

2.3 Problems

9. True FALSE It is possible for $A \vec{x}=\overrightarrow{0}$ to have no solutions.

Solution: $\vec{x}=\overrightarrow{0}$ is a solution so it cannot have no solutions.
10. TRUE False If we know that $A \vec{x}=\vec{b}$ has no solutions, then we know what $\operatorname{det}(A)$ is.

Solution: If it has no solutions, then $\operatorname{det}(A)=0$.
11. Let $A=\left(\begin{array}{ccc}2 & 4 & -1 \\ 2 & 2 & 5 \\ 6 & 8 & 9\end{array}\right)$. What is $\operatorname{det}(A)$? How many solutions that $A \vec{x}=\overrightarrow{0}$ have?

Solution: The determinant is $2 \cdot 2 \cdot 9+4 \cdot 5 \cdot 6+(-1) \cdot 2 \cdot 8-2 \cdot 5 \cdot 8-4 \cdot 2 \cdot 9-(-1) \cdot 2 \cdot 6=0$. Therefore $A \vec{x}=\overrightarrow{0}$ has 0 or ∞ many solutions. But $\vec{x}=\overrightarrow{0}$ is a solution so it cannot have 0 solutions, so it has ∞ many solutions.
12. Let $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 5 & 1 & 3 \\ 2 & 2 & 4\end{array}\right)$. What is $\operatorname{det}(A)$? How many solutions does $A \vec{x}=\overrightarrow{0}$ have?

Solution: The determinant is $-\left|\begin{array}{ll}5 & 3 \\ 2 & 4\end{array}\right|=-(5 \cdot 4-3 \cdot 2)=-14$. Since $\operatorname{det}(A) \neq 0$, this has a unique solution and it is $\vec{x}=\overrightarrow{0}$.
13. Find the solution to $x+2 y=3$ and $4 x+5 y=6$ using matrix vector form.

Solution: We write it as

$$
\left(\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right)\binom{x}{y}=\binom{3}{6} .
$$

Thus

$$
\binom{x}{y}=\left(\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right)^{-1}\binom{3}{6}=\frac{1}{1 \cdot 5-2 \cdot 4}\left(\begin{array}{cc}
5 & -2 \\
-4 & 1
\end{array}\right)\binom{3}{6}=\binom{-1}{2}
$$

14. Write $x+y=10, y+z=5, x+z=-1$ in matrix vector form. How many solutions does it have?

Solution:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
10 \\
5 \\
-1
\end{array}\right) .
$$

To determine the number of solutions, we can calculate the determinant and it is $1 \cdot 1 \cdot 1+1 \cdot 1 \cdot 1-0=2 \neq 0$. Therefore, there is a unique solution.

